Quantcast
Channel: R-bloggers
Viewing all articles
Browse latest Browse all 12081

Modeling pandemics (1)

$
0
0

[This article was first published on R-english – Freakonometrics, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The most popular model to model epidemics is the so-called SIR model – or Kermack-McKendrick. Consider a population of size N, and assume that S is the number of susceptible, I the number of infectious, and R for the number recovered (or immune) individuals, \displaystyle {\begin{aligned}&{\frac {dS}{dt}}=-{\frac {\beta IS}{N}},\\[6pt]&{\frac {dI}{dt}}={\frac {\beta IS}{N}}-\gamma I,\\[6pt]&{\frac {dR}{dt}}=\gamma I,\end{aligned}}so that \displaystyle{{\frac{dS}{dt}}+{\frac {dI}{dt}}+{\frac {dR}{dt}}=0}which implies that S+I+R=N. In order to be more realistic, consider some (constant) birth rate \mu, so that the model becomes\displaystyle {\begin{aligned}&{\frac {dS}{dt}}=\mu(N-S)-{\frac {\beta IS}{N}},\\[6pt]&{\frac {dI}{dt}}={\frac {\beta IS}{N}}-(\gamma+\mu) I,\\[6pt]&{\frac {dR}{dt}}=\gamma I-\mu R,\end{aligned}}Note, in this model, that people get sick (infected) but they do not die, they recover. So here, we can model chickenpox, for instance, not SARS.

The dynamics of the infectious class depends on the following ratio:\displaystyle{R_{0}={\frac {\beta }{\gamma +\mu}}} which is the so-called basic reproduction number (or reproductive ratio). The effective reproductive ratio is R_0S/N, and the turnover of the epidemic happens exactly when R_0S/N=1, or when the fraction of remaining susceptibles is R_0^{-1}. As shown in Directly transmitted infectious diseases:Control by vaccination, if S/N<R_0^{-1}[/latex] the disease (the number of people infected) will start to decrease.</p><p>Want to see it  ? Start with</p><p>2865af5b81a09019fccc429625084395011</p><p>for the parameters. Here,  [latex]R_0=4. We also need starting values

12345
epsilon = .001N =1S =1-epsilonI= epsilonR =0

Then use the ordinary differential equation solver, in R. The idea is to say that \boldsymbol{Z}=(S,I,R) and we have the gradient \frac{\partial \boldsymbol{Z}}{\partial t} = SIR(\boldsymbol{Z})where SIR is function of the various parameters. Hence, set

12
p =c(mu =0, N =1, beta=2, gamma=1/2)start_SIR =c(S =1-epsilon, I= epsilon, R =0)

The we must define the time, and the function that returns the gradient,

123456789
times =seq(0, 10, by= .1)SIR =function(t,Z,p){S=Z[1];I=Z[2]; R=Z[3]; N=S+I+Rmu=p["mu"];beta=p["beta"];gamma=p["gamma"]dS=mu*(N-S)-beta*S*I/NdI=beta*S*I/N-(mu+gamma)*IdR=gamma*I-mu*RdZ=c(dS,dI,dR)return(dZ)}

To solve this problem use

12
library(deSolve)resol = ode(y=start_SIR, times=times, func=SIR, parms=p)

We can visualize the dynamics below

12345678
par(mfrow=c(1,2))t=resol[,"time"]plot(t,resol[,"S"],type="l",xlab="time",ylab="")lines(t,resol[,"I"],col="red")lines(t,resol[,"R"],col="blue")plot(t,t*0+1,type="l",xlab="time",ylab="",ylim=0:1)polygon(c(t,rev(t)),c(resol[,"R"],rep(0,nrow(resol))),col="blue")polygon(c(t,rev(t)),c(resol[,"R"]+resol[,"I"],rev(resol[,"R"])),col="red")

We can actually also visualize the effective reproductive number is R_0S/N, where

1
R0=p["beta"]/(p["gamma"]+p["mu"])

The effective reproductive number is on the left, and as we mentioned above, when we reach 1, we actually reach the maximum of the infected,

123456789
plot(t,resol[,"S"]*R0,type="l",xlab="time",ylab="")abline(h=1,lty=2,col="red")abline(v=max(t[resol[,"S"]*R0&gt;=1]),col="darkgreen")points(max(t[resol[,"S"]*R0&gt;=1]),1,pch=19)plot(t,resol[,"S"],type="l",xlab="time",ylab="",col="grey")lines(t,resol[,"I"],col="red",lwd=3)lines(t,resol[,"R"],col="light blue")abline(v=max(t[resol[,"S"]*R0&gt;=1]),col="darkgreen")points(max(t[resol[,"S"]*R0&gt;=1]),max(resol[,"I"]),pch=19)

And when adding a \mu parameter, we can obtain some interesting dynamics on the number of infected,

12345
times =seq(0, 100, by=.1)p =c(mu =1/100, N =1, beta=50, gamma=10)start_SIR =c(S=0.19, I=0.01, R =0.8)resol = ode(y=start_SIR, t=times, func=SIR, p=p)plot(resol[,"time"],resol[,"I"],type="l",xlab="time",ylab="")

var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) {var s = d.createElement(t); s.type = 'text/javascript'; s.async = true;s.src = '//cdn.viglink.com/api/vglnk.js';var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

To leave a comment for the author, please follow the link and comment on their blog: R-english – Freakonometrics.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.


Viewing all articles
Browse latest Browse all 12081

Trending Articles