Although this is far from a paradox when realising why the phenomenon occurred, it took me a few lines to understand why the empirical average of a log-normal sample is apparently a biased estimator of its mean. And why the biased plug-in estimator does not appear to present a bias. The picture below compares two estimators of the mean of a log-normal LN(0,σ²) distribution when σ² increases: blue stands for the empirical mean, while gold corresponds to the plug-in estimator exp(σ²/2) when σ² is estimated from the log-sample. (The sample is of size 10⁶.)
The question came on X validated and my first reaction was to doubt the implementation which outcome was so counter-intuitive. But then I thought about the representation of a log-normal variate as exp(σξ) when ξ is a standard Normal variate. When σ grows large enough, it is near impossible for σξ to be larger than σ². More precisely,
P(X>E[X])=P(σξ>σ²/2)=1-Φ(σ/2)
which can be arbitrarily small.
Filed under: Books, Kids, R, Statistics Tagged: cross validated, empirical cdf, Gumbel distribution, R, skewed distribution, Stack Exchange
R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...