(This article was first published on Rstats on Julia Silge, and kindly contributed to R-bloggers)
This year, I have given some talks about understanding principal component analysis using what I spend day in and day out with, Stack Overflow data. You can see a recording of one of these talks from rstudio::conf 2018. When I have given these talks, I’ve focused a lot on understanding PCA. This blog post walks through how I implemented PCA and how I made the plots I used in my talk.
var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));To leave a comment for the author, please follow the link and comment on their blog: Rstats on Julia Silge.
R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...