Quantcast
Channel: R-bloggers
Viewing all articles
Browse latest Browse all 12095

Package GetDFPData

$
0
0

(This article was first published on R and Finance, and kindly contributed to R-bloggers)

Downloading Annual Financial Reports and Corporate Events from B3 (formerly Bovespa) –

Financial statements of companies traded at B3 (formerly Bovespa), the Brazilian stock exchange, are available in its website. Accessing the data for a single company is straightforward. In the website one can find a simple interface for accessing this dataset. An example is given here. However, gathering and organizing the data for a large scale research, with many companies and many dates, is painful. Financial reports must be downloaded or copied individually and later aggregated. Changes in the accounting format thoughout time can make this process slow, unreliable and irreproducible.

Package GetDFPData provides a R interface to all annual financial statements available in the website and more. It not only downloads the data but also organizes it in a tabular format and allows the use of inflation indexes. Users can select companies and a time period to download all available data. Several information about current companies, such as sector and available quarters are also at reach. The main purpose of the package is to make it easy to access financial statements in large scale research, facilitating the reproducibility of corporate finance studies with B3 data.

The positive aspects of GetDFDData are:

  • Easy and simple R and web interface
  • Changes in accounting format are internally handled by the software
  • Access to corporate events in the FRE system such as dividend payments, changes in stock holder composition, changes in governance listings, board composition and compensation, debt composition, and a lot more!
  • The output data is automatically organized using tidy data principles (long format)
  • A cache system is employed for fast data acquisition
  • Completely free and open source!

Installation

The package is (not yet) available in CRAN (release version) and in Github (development version). You can install any of those with the following code:

# Release version in CRANinstall.packages('GetDFPData') # not in CRAN yet# Development version in Githubdevtools::install_github('msperlin/GetDFPData')

Shinny interface

The web interface of GetDFPData is available at http://www.msperlin.com/shiny/GetDFPData/.

How to use GetDFPData

The starting point of GetDFPData is to find the official names of companies in B3. Function gdfpd.search.company serves this purpose. Given a string (text), it will search for a partial matches in companies names. As an example, let’s find the official name of Petrobras, one of the largest companies in Brazil:

library(GetDFPData)library(tibble)gdfpd.search.company('petrobras',cache.folder = tempdir())## ## Reading info file from github## Found 43873 lines for 687 companies  [Actives =  521  Inactives =  167 ]## Last file update:  2017-10-19## Caching RDATA into tempdir()## ## Found 1 companies:## PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS | situation = ATIVO | first date = 1998-12-31 | last date - 2016-12-31## [1] "PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS"

Its official name in Bovespa records is PETRÓLEO BRASILEIRO S.A. - PETROBRAS. Data for quarterly and annual statements are available from 1998 to 2017. The situation of the company, active or canceled, is also given. This helps verifying the availability of data.

The content of all available financial statements can be accessed with function gdfpd.get.info.companies. It will read and parse a .csv file from my github repository. This will be periodically updated for new information. Let’s try it out:

df.info <- gdfpd.get.info.companies(type.data = 'companies', cache.folder = tempdir())## ## Reading info file from github## Found 43873 lines for 687 companies  [Actives =  521  Inactives =  167 ]## Last file update:  2017-10-19## Caching RDATA into tempdir()glimpse(df.info)## Observations: 689## Variables: 8## $ name.company     "521 PARTICIPAÇOES S.A. - EM LIQUIDAÇÃO EXTRAJ...## $ id.company       16330, 16284, 108, 20940, 21725, 19313, 18970,...## $ situation        "ATIVO", "ATIVO", "CANCELADA", "CANCELADA", "A...## $ listing.segment  NA, "None", "None", "None", "None", "None", "C...## $ main.sector      NA, "Financeiro e Outros", "Materiais Básicos"...## $ tickers          NA, "QVQP3B", NA, NA, NA, "AELP3", "TIET11;TIE...## $ first.date       1998-12-31, 2001-12-31, 2009-12-31, 2009-12-3...## $ last.date        2016-12-31, 2016-12-31, 2009-12-31, 2009-12-3...

This file includes several information that are gathered from Bovespa: names of companies, official numeric ids, listing segment, sectors, traded tickers and, most importantly, the available dates. The resulting dataframe can be used to filter and gather information for large scale research such as downloading financial data for a specific sector.

Downloading financial information for ONE company

All you need to download financial data with GetDFPData are the official names of companies, which can be found with gdfpd.search.company, the desired starting and ending dates and the type of financial information (individual or consolidated). Let’s try it for PETROBRAS:

name.companies <- 'PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS'first.date <- '2004-01-01'last.date  <- '2006-01-01'df.reports <- gdfpd.GetDFPData(name.companies = name.companies,                                first.date = first.date,                               last.date = last.date,                               cache.folder = tempdir())## Found cache file. Loading data..## ## Downloading data for 1 companies## First Date: 2004-01-01## Laste Date: 2006-01-01## Inflation index: dollar## ## Downloading inflation data##  Caching inflation RDATA into tempdir()  Done## ## ## WARNING: Cash flow statements are not available before 2009 ## ## Inputs looking good! Starting download of files:## ## PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS##  Available periods: 2005-12-31   2004-12-31## ## ## Processing 9512 - PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS##  Finding info from Bovespa | downloading and reading data | saving cache##  Processing 9512 - PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS | date 2005-12-31##      Acessing DFP data | downloading file | reading file | saving cache##      Acessing FRE data | No FRE file available..##      Acessing FCA data | No FCA file available..##  Processing 9512 - PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS | date 2004-12-31##      Acessing DFP data | downloading file | reading file | saving cache##      Acessing FRE data | No FRE file available..##      Acessing FCA data | No FCA file available..

The resulting object is a tibble, a data.frame type of object that allows for list columns. Let’s have a look in its content:

glimpse(df.reports)## Observations: 1## Variables: 33## $ company.name                   "PETRÓLEO BRASILEIRO  S.A.  - PE...## $ company.code                   9512## $ company.tickers                "PETR3;PETR4"## $ min.date                       2004-12-31## $ max.date                       2005-12-31## $ n.periods                      2## $ company.segment                "Tradicional"## $ current.stockholders           [ [ [ [ [ [ [ [ [ [ [ [NULL]## $ history.capital.issues         [NULL]## $ history.mkt.value              [NULL]## $ history.capital.increases      [NULL]## $ history.capital.reductions     [NULL]## $ history.stock.repurchases      [NULL]## $ history.other.stock.events     [NULL]## $ history.compensation           [NULL]## $ history.compensation.summary   [NULL]## $ history.transactions.related   [NULL]## $ history.debt.composition       [NULL]## $ history.governance.listings    [NULL]## $ history.board.composition      [NULL]## $ history.committee.composition  [NULL]## $ history.family.relations       [NULL]

Object df.reports only has one row since we only asked for data of one company. The number of rows increases with the number of companies, as we will soon learn with the next example. All financial statements for the different years are available within df.reports. For example, the assets statements for all desired years of PETROBRAS are:

df.income.long <- df.reports$fr.income[[1]]glimpse(df.income.long)## Observations: 48## Variables: 6## $ name.company        "PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS", "...## $ ref.date            2005-12-31, 2005-12-31, 2005-12-31, 2005-1...## $ acc.number          "3.01", "3.02", "3.03", "3.04", "3.05", "3....## $ acc.desc            "Receita Bruta de Vendas e/ou Serviços", "D...## $ acc.value           143665730, -37843204, 105822526, -57512113,...## $ acc.value.infl.adj  61398234.97, -16173000.56, 45225234.41, -24...

The resulting dataframe is in the long format, ready for processing. In the long format, financial statements of different years are stacked. In the wide format, we have the year as columns of the table.

If you want the wide format, which is the most common way that financial reports are presented, you can use function gdfpd.convert.to.wide. See an example next:

df.income.wide <- gdfpd.convert.to.wide(df.income.long)knitr::kable(df.income.wide )
acc.numberacc.descname.company2004-12-312005-12-31
3.01Receita Bruta de Vendas e/ou ServiçosPETRÓLEO BRASILEIRO S.A. – PETROBRAS120024727143665730
3.02Deduções da Receita BrutaPETRÓLEO BRASILEIRO S.A. – PETROBRAS-34450292-37843204
3.03Receita Líquida de Vendas e/ou ServiçosPETRÓLEO BRASILEIRO S.A. – PETROBRAS85574435105822526
3.04Custo de Bens e/ou Serviços VendidosPETRÓLEO BRASILEIRO S.A. – PETROBRAS-48607576-57512113
3.05Resultado BrutoPETRÓLEO BRASILEIRO S.A. – PETROBRAS3696685948310413
3.06Despesas/Receitas OperacionaisPETRÓLEO BRASILEIRO S.A. – PETROBRAS-11110540-14810467
3.06.01Com VendasPETRÓLEO BRASILEIRO S.A. – PETROBRAS-2858630-4195157
3.06.02Gerais e AdministrativasPETRÓLEO BRASILEIRO S.A. – PETROBRAS-2599552-3453753
3.06.03FinanceirasPETRÓLEO BRASILEIRO S.A. – PETROBRAS-1019901126439
3.06.04Outras Receitas OperacionaisPETRÓLEO BRASILEIRO S.A. – PETROBRAS00
3.06.05Outras Despesas OperacionaisPETRÓLEO BRASILEIRO S.A. – PETROBRAS-5982336-9070019
3.06.06Resultado da Equivalência PatrimonialPETRÓLEO BRASILEIRO S.A. – PETROBRAS13498791782023
3.07Resultado OperacionalPETRÓLEO BRASILEIRO S.A. – PETROBRAS2585631933499946
3.08Resultado Não OperacionalPETRÓLEO BRASILEIRO S.A. – PETROBRAS-550694-199982
3.08.01ReceitasPETRÓLEO BRASILEIRO S.A. – PETROBRAS466111256194
3.08.02DespesasPETRÓLEO BRASILEIRO S.A. – PETROBRAS-597305-1456176
3.09Resultado Antes Tributação/ParticipaçõesPETRÓLEO BRASILEIRO S.A. – PETROBRAS2530562533299964
3.10Provisão para IR e Contribuição SocialPETRÓLEO BRASILEIRO S.A. – PETROBRAS-5199166-8581490
3.11IR DiferidoPETRÓLEO BRASILEIRO S.A. – PETROBRAS-1692288-422392
3.12Participações/Contribuições EstatutáriasPETRÓLEO BRASILEIRO S.A. – PETROBRAS-660000-846000
3.12.01ParticipaçõesPETRÓLEO BRASILEIRO S.A. – PETROBRAS-660000-846000
3.12.02ContribuiçõesPETRÓLEO BRASILEIRO S.A. – PETROBRAS00
3.13Reversão dos Juros sobre Capital PróprioPETRÓLEO BRASILEIRO S.A. – PETROBRAS00
3.15Lucro/Prejuízo do ExercícioPETRÓLEO BRASILEIRO S.A. – PETROBRAS1775417123450082

Downloading financial information for SEVERAL companies

If you are doing serious research, it is likely that you need financial statements for more than one company. Package GetDFPData is specially designed for handling large scale download of data. Let’s build a case with two selected companies:

my.companies <- c('PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS',                  'BANCO DO ESTADO DO RIO GRANDE DO SUL SA')first.date <- '2005-01-01'last.date  <- '2007-01-01'type.statements <- 'individual'df.reports <- gdfpd.GetDFPData(name.companies = my.companies,                                first.date = first.date,                               last.date = last.date,                               cache.folder = tempdir())## Found cache file. Loading data..## ## Downloading data for 2 companies## First Date: 2005-01-01## Laste Date: 2007-01-01## Inflation index: dollar## ## Downloading inflation data##  Found cache file. Loading data..    Done## ## ## WARNING: Cash flow statements are not available before 2009 ## ## Inputs looking good! Starting download of files:## ## BANCO DO ESTADO DO RIO GRANDE DO SUL SA##  Available periods: 2006-12-31   2005-12-31## PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS##  Available periods: 2006-12-31   2005-12-31## ## ## Processing 1210 - BANCO DO ESTADO DO RIO GRANDE DO SUL SA##  Finding info from Bovespa | downloading and reading data | saving cache##  Processing 1210 - BANCO DO ESTADO DO RIO GRANDE DO SUL SA | date 2006-12-31##      Acessing DFP data | downloading file | reading file | saving cache##      Acessing FRE data | No FRE file available..##      Acessing FCA data | No FCA file available..##  Processing 1210 - BANCO DO ESTADO DO RIO GRANDE DO SUL SA | date 2005-12-31##      Acessing DFP data | downloading file | reading file | saving cache##      Acessing FRE data | No FRE file available..##      Acessing FCA data | No FCA file available..## Processing 9512 - PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS##  Finding info from Bovespa##      Found cache file /tmp/RtmpSpLsOP/9512_PETRÓLEO/GetDFPData_BOV_cache_9512_PETR.rds##  Processing 9512 - PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS | date 2006-12-31##      Acessing DFP data | downloading file | reading file | saving cache##      Acessing FRE data | No FRE file available..##      Acessing FCA data | No FCA file available..##  Processing 9512 - PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS | date 2005-12-31##      Acessing DFP data | Found DFP cache file##      Acessing FRE data | No FRE file available..##      Acessing FCA data | No FCA file available..

And now we can check the resulting tibble:

glimpse(df.reports)## Observations: 2## Variables: 33## $ company.name                   "BANCO DO ESTADO DO RIO GRANDE D...## $ company.code                   1210, 9512## $ company.tickers                "BRSR3;BRSR5;BRSR6", "PETR3;PETR4"## $ min.date                       2005-12-31, 2005-12-31## $ max.date                       2006-12-31, 2006-12-31## $ n.periods                      2, 2## $ company.segment                "Corporate Governance - Level 1"...## $ current.stockholders           [ [ [ [ [ [ [ [ [ [ [ [NULL, NULL]## $ history.capital.issues         [NULL, NULL]## $ history.mkt.value              [NULL, NULL]## $ history.capital.increases      [NULL, NULL]## $ history.capital.reductions     [NULL, NULL]## $ history.stock.repurchases      [NULL, NULL]## $ history.other.stock.events     [NULL, NULL]## $ history.compensation           [NULL, NULL]## $ history.compensation.summary   [NULL, NULL]## $ history.transactions.related   [NULL, NULL]## $ history.debt.composition       [NULL, NULL]## $ history.governance.listings    [NULL, NULL]## $ history.board.composition      [NULL, NULL]## $ history.committee.composition  [NULL, NULL]## $ history.family.relations       [NULL, NULL]

Every row of df.reports will provide information for one company. Metadata about the corresponding dataframes such as min/max dates is available in the first columns. Keeping a tabular structure facilitates the organization and future processing of all financial data. We can use tibble df.reports for creating other dataframes in the long format containing data for all companies. See next, where we create dataframes with the assets and liabilities of all companies:

df.assets <- do.call(what = rbind, args = df.reports$fr.assets)df.liabilities <- do.call(what = rbind, args = df.reports$fr.liabilities)df.assets.liabilities <- rbind(df.assets, df.liabilities)

As an example, let’s use the resulting dataframe for calculating and analyzing a simple liquidity index of a company, the total of current (liquid) assets (Ativo circulante) divided by the total of current short term liabilities (Passivo Circulante), over time.

library(dplyr)## ## Attaching package: 'dplyr'## The following objects are masked from 'package:stats':## ##     filter, lag## The following objects are masked from 'package:base':## ##     intersect, setdiff, setequal, unionmy.tab <- df.assets.liabilities %>%  group_by(name.company, ref.date) %>%  summarise(Liq.Index = acc.value[acc.number == '1.01']/ acc.value[acc.number == '2.01'])my.tab## # A tibble: 3 x 3## # Groups:   name.company [?]##                              name.company   ref.date Liq.Index##                                               ## 1 BANCO DO ESTADO DO RIO GRANDE DO SUL SA 2006-12-31 0.7251432## 2  PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS 2005-12-31 0.9370813## 3  PETRÓLEO BRASILEIRO  S.A.  - PETROBRAS 2006-12-31 0.9733600

Now we can visualize the information using ggplot2:

library(ggplot2)p <- ggplot(my.tab, aes(x = ref.date, y = Liq.Index, fill = name.company)) +  geom_col(position = 'dodge' )print(p)

Exporting financial data

The package includes function gdfpd.export.DFP.data for exporting the financial data to an Excel or zipped csv files. See next:

my.basename <- 'MyExcelData'my.format <- 'csv' # only supported so fargdfpd.export.DFP.data(df.reports = df.reports,                       base.file.name = my.basename,                      type.export = my.format)

The resulting Excel file contains all data available in df.reports.

var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) {var s = d.createElement(t); s.type = 'text/javascript'; s.async = true;s.src = '//cdn.viglink.com/api/vglnk.js';var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

To leave a comment for the author, please follow the link and comment on their blog: R and Finance.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...


Viewing all articles
Browse latest Browse all 12095

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>